Selecting Sentences for Answering Complex Questions

نویسندگان

  • Yllias Chali
  • Shafiq R. Joty
چکیده

Complex questions that require inferencing and synthesizing information from multiple documents can be seen as a kind of topicoriented, informative multi-document summarization. In this paper, we have experimented with one empirical and two unsupervised statistical machine learning techniques: kmeans and Expectation Maximization (EM), for computing relative importance of the sentences. However, the performance of these approaches depends entirely on the feature set used and the weighting of these features. We extracted different kinds of features (i.e. lexical, lexical semantic, cosine similarity, basic element, tree kernel based syntactic and shallow-semantic) for each of the document sentences in order to measure its importance and relevancy to the user query. We used a local search technique to learn the weights of the features. For all our methods of generating summaries, we have shown the effects of syntactic and shallow-semantic features over the bag of words (BOW) features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Question Generation from Sentences

Question Generation (QG) and Question Answering (QA) are some of the many challenges for natural language understanding and interfaces. As humans need to ask good questions, the potential benefits from automated QG systems may assist them in meeting useful inquiry needs. In this paper, we consider an automatic Sentence-to-Question generation task, where given a sentence, the Question Generation...

متن کامل

Question-Answering Using Semantic Relation Triples

This paper describes the development of a prototype system to answer questions by selecting sentences from the documents in which the answers occur. After parsing each sentence in these documents, databases are constructed by extracting relational triples from the parse output. The triples consist of discourse entities, semantic relations, and the governing words to which the entities are bound...

متن کامل

Improving the Performance of the Random Walk Model for Answering Complex Questions

We consider the problem of answering complex questions that require inferencing and synthesizing information from multiple documents and can be seen as a kind of topicoriented, informative multi-document summarization. The stochastic, graph-based method for computing the relative importance of textual units (i.e. sentences) is very successful in generic summarization. In this method, a sentence...

متن کامل

A Hybrid Unification Method for Question Answering in Closed Domains

As opposed to factoid questions, questions posed in a closed domain are typically more open-ended. People can ask for specific properties, procedures or conditions and require longer and more complex answers. As a result, detailed understanding of the question and the corpus texts is required for answering such questions. In this paper, we present a unification-based algorithm for measuring syn...

متن کامل

A reinforcement learning formulation to the complex question answering problem

We use extractive multi-document summarization techniques to perform complex question answering and formulate it as a reinforcement learning problem. Given a set of complex questions, a list of relevant documents per question, and the corresponding human generated summaries (i.e. answers to the questions) as training data, the reinforcement learning module iteratively learns a number of feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008